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A numerical solution of the Shallow Water Equations is presented. The construction of the 
solution is based on the Random Choice Method consisting in the solution of Riemann 
problems and sampling techniques. As an illustration the method is applied to the problem of 
the breaking of a dam. The main advantages of the method described lie in its ability to 
simulate discontinuities and in its lack of numerical dissipation. 

1. INTRODUCTION AND GENERAL CONSIDERATIONS 

The existence, in general, of discontinuities in the solution of non-linear hyperbolic 
partial differential equations is a well known fact. These discontinuities may be 
produced by non-smooth initial data or may very well develop spontaneously in the 
domain, even in the case of smooth initial data. The hyperbolic equations that we 
study here are mathematical statements of conservation laws and therefore integral 
relations the solutions of which need not be continuous. These solutions are called 
generalized solutions (weak solutions). Uniqueness is achieved when the non-linear 
hyperbolic system of conservation laws satisfies the Rankine-Hugoniot relations and 
the entropy condition, at the line of discontinuity, (see, for instance, tax [7] or 
Chorin and Marsden [4]). In the solution of systems of quasi-linear hyperbolic 
equations in gas dynamics, discontinuities arise when shock waves, rarefaction waves, 
and slip lines are present. A typical example of this phenomenon is provided by the 
experiment of the shock tube problem in which two gases, initially at rest, with 
different pressures and densities and separated by a diaphragm, are brought in 
contact by the sudden destruction of the diaphragm; the higher pressure gas expands 
in the direction of the lower pressure gas, producing a shock and a slip line 
(travelling in the same direction), and a rarefaction wave (travelling in the opposite 
direction). 

The hyperbolic quasi-linear system of equations governing the flow of an ideal 
incompressible fluid, in a gravitational field, with a free surface and when the depth 
of the fluid is considered small, is termed Shallow Water Equations. In the solution of 
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these equations discontinuities arise when bores or hydraulic jumps are present. A 
rather classical example of such a phenomenon is provided by the problem of the 
breaking of a dam (see, for instance, Stoker [ 121 or Strelkoff et al. [ 13]), in which 
two different surface levels of water initially at rest and separated by the dam are 
brought into contact by the sudden failure of the dam. The high level water flows in 
the direction of the low level water, producing a bore travelling in the same direction 
and a depression wave travelling in the opposite direction. 

The formal similarity between the shock tube problem and the breaking of a dam is 
transparent. In fact, this similarity is supported by the well known analogy between 
the equations of the isoentropic flow of a perfect gas with constant specific heat and 
the shallow water equations. In both theories the analogy is greatly illuminated by the 
method of characteristics (see, for instance, Courant and Friedrichs [6], Stoker [ 121, 
or Abbott [ 1 I). In the course of this study we extend results of gas dynamics to 
shallow water equations by virtue of that analogy. 

In gas dynamics the presence of a compressive shock implies an increase of the 
entropy at the shock which is exclusively defined by the laws of conservation of 
mass, momentum and energy; the thickness of the shock depends on the dissipative 
mechanism process. In the shallow water analogy the situation bears some resem- 
blance: through the hydraulic jump there is a loss of energy which depends on the 
laws of,conservation of mass and momentum while the thickness of the jump depends 
on the dissipative mechanism, namely, turbulence. The theory of ideal gases or its 
hydraulic analogy cannot describe the mechanism of the discontinuity or its 
thickness; it can only represent the shock as an ideal curve with zero thickness. The 
similarity solutions provided by the two theories preclude any characteristic length 
which may serve as a scale of the thickness of the shock layer. 

In the recent past considerable effort has been devoted to the improvement of the 
numerical solutions of one dimensional gas dynamic equations and its hydraulic 
analogy (see, for instance, Sod [lo] and Strelkoff et al. [ 131). Recently Chorin [2] 
introduced the Random Choice Method (RCM), which is based on an approximate 
method for the construction of solutions of non-linear hyperbolic systems of conser- 
vation laws developed by Glimm (see Lax [7]). In the RCM the solution is 
constructed as a superposition of locally theoretical solutions and sampling 
techniques. The main advantage of the RCM over other numerical methods lies in its 
lack of numerical dissipation and, for the case of hyperbolic systems with constant 
coefficients, in its infinite resolution. 

The RCM has been applied to a wide variety of problems. Chorin [3] solved 
reacting gas flows and flame propagation; Sod [ 10, 1 l] made extensive comparisons 
of the RCM with other recent finite difference schemes and extended the RCM for 
radially and spherically symmetric gas dynamical flows; Concus and Proskurowski 
[S] solved a non-linear hyperbolic equation in porous media. 

In the present work we outline the main aspects of the RCM for the shallow water 
equations in the light of the analogy with gas dynamics. Numerical results for the 
problem of the breaking of a dam are shown. 
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2. SINGLE CONSERVATION LAWS AND THE RANDOM CHOICE METHOD 

We introduce briefly the main features of hyperbolic equations in conservation 
form ad a simple example of the application of the RCM. Consider the initial value 
problem 

u, + f(u), = 0, (2.1) 

wheref(u) = - au (a is a constant greater than zero); the initial conditions are 

u(x, 0) = F(x). (24 

The hyperbolic equation (2.1) is said to be written in conservation form and describes 
a single conservation law. Denote 

(2.3) 

Thus (2.1) can be written in the equivalent form 

u, - au, = 0. 

The theoretical solution of (2.1) or (2.4) is 

(2.4) 

u(x, t) = F(x + at). (2.5) 

The fact that u(x, t) = F(x + at) means that along lines x + at = const, U(X, t) is a 
constant. These lines with slope dt/dx = - l/u form one family of parallel lines which 
are called characteristic lines (for reasons that will be apparent later). Any initial 
discontinuity will be carried unchanged along the characteristic as illustrated in Fig. 
2.1. Since characteristics cannot intersect, discontinuities cannot develop 
spontaneously inside the domain; obviously, they can be introduced through the 
boundaries. 

characteristic line , u(x,t) 
with slope -l/a t 

FIG. 2.1. Solution of Eq. (2.1) with an initial discontinuity 

u(x, 0) = 
I 

u, = 0, x < 0, 

I$= 1, x > 0. 
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Consider now the initial value problem 

u, + f(u), = 0, u(x, 0) = F(x), 

wheref(u) = u2/2; thus (2.6) can be written in the equivalent form 

(2.6) 

ut + uu, = 0. (2.7) 

The solution of (2.7) is constant along lines with slopes of dt/dx = l/u. This one 
family of characteristic lines is a function of u and therefore the lines are straight 
since along them u is constant. Equation (2.7) differs from (2.1) mainly in that the 
characteristic lines need not be parallel; they can intersect or just diverge. In Fig. 2.2 
we illustrate the intersection of characteristics. The initial conditions are 
u(x, 0) = F(x) as shown in the figure with u, = 1 and u, = 0 at the left and right, 
respectively, of segment AB and with a linear variation inside AB. The characteristics 
from the left of A will have slopes l/u, and those from the right of B, l/ur, and in 
region AB they will have a fan-like pattern varying from l/u, to l/u,. At point M 
they intersect, developing a discontinuity (the solution is not single valued), which 
will travel at a speed different from the speeds of both incoming characteristics. In 
fact this discontinuity or compressive shock travels with a speed s given by the jump 
conditions (Rankine-Hugoniot conditions in gas dynamics). It can be shown that the 
speed of the shock is constant and equal to 

dx 1 f(uJ - ml) = (4 + 4) 
S=dt=T u, - 4 2 * (2.8) 

Thus, as indicated in Fig. 2.2, the shock moves along a line with slope l/s = 2. 
In Fig. 2.3 we illustrate an example of diverging characteristics. The initial 

conditions are u(x, 0) = F(x) as shown in Fig. 2.3. Characteristics from the left and 
from the right diverge and, in zone OMB, the connection between the left and right 
states must be a fan-like pattern called a centered rarefaction wave; otherwise the 
solution for increasing time in sector OMB will be independent of the initial 

-x 

A s 
up = 1 

Ur =o 

FIG. 2.2. The genesis of a discontinuity. 
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FIG. 2.3. Diverging characteristics. 

conditions. We might think of connecting the left and right states by means of a 
rarefaction shock whose speed satisfies the jump conditions, but this situation does 
not exist in nature because it is forbidden by the entropy condition and therefore has 
to be ruled out. To this end we utilize the following criterion: the characteristics on 
either side of the discontinuity curve when continued in the direction of increasing 
time must intersect the line of discontinuity. This will be the case if 

a(u,) > s > a(u,). 

In the example illustrated in Fig. 2.2 condition (2.9) can be written as 

(2.9) 

(2. IO) 

In gas dynamics this criterion is called the entropy condition because it is 
equivalent to requiring that the fluid which crosses the discontinuity suffer an 
increase in entropy (see Lax [7]). 

We next introduce the Random Choice Method with a very simple example (see 
also Chorin and Marsden [4] or Concus and Proskurowski [5]). Consider the initial 
value problem given by Eq. (2.4) with initial conditions (2.2). The RCM provides 
with an approximation to the values of U(X, t) at grid points u; = u(ih, nk), where i 
and n are integers and h and k the space and time steps, respectively. The RCM 
constructs the solution advancing the initial state forward in time by means of two 
fractional steps equal in length. We describe the first fractional step (the second is 
identical). 

At time t, = nk the method approximates the solution u(x, fn) by a succession of 
constant states as illustrated in Fig. 2.4. Next, using as initial data the piecewise 
constant function, the theoretical solution of Eq. (2.4) is constructed, between t, = nk 
and t,+ I/z = (n + 1/2)k, by means of the solution of a succession of Riemann 
problems (one for each point x, = ih). A Riemann problem is an initial value problem 
of the form 

21, - au, = 0 (2.11) 
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(i-l/Z)h ih (i+l/Z)h (i+l)h X = ih 

FIG. 2.4. Approximation of u(x, t.) by a piecewise constant function. 

for t > t, with the initial conditions 
u(x, t”) = 247 for x < (i + 1/2)h 

=u;+, for x > (i + 1/2)h. (2.12) 

In general there is a discontinuity in the initial data (2.12) which will propagate 
along the characteristic line with slope l/a. If there is a discontinuity for every grid 
point they will not interact provided the Courant-Friedrichs-Lewy (CFL) condition 
k/h < l/a is satisfied. In this case the solution of Eq. (2.4) at time tn+VZ = (n + 1/2)k, 
with piecewise constant initial data at time t, = nk, can be considered to be formed 
by the union of the solutions of each Riemann problem given by Eqs. (2.11) and 
(2.12). 

Next the solution is sampled, by means of a random choice procedure, in the 
interval [-h/2, h/2], for each point (i + 1/2)h, to obtain the value of the solution to 
be ascribed to each u;++1:/22 . If u(x, t) is the solution of Eqs. (2.11) and (2.12), then 

(2.13) 

where P, is a randomly chosen point with coordinates [(i + l/2 + 1/28i+ &h, 
(n + l/VI, where 4+,,, is sampled at random from a distribution on the interval 
i-1, 11. 

With an identical procedure the solution is advanced from t,+1,2 to t,,+, and the 
whole process is repeated for increasing time. 

We consider in detail how the RCM works in the case of Eq. (2.4). Let us suppose 
that for a particular grid point uf ( a;+ i; therefore a discontinuity will travel along 
the characteristic line with slope -l/u. Using for convenience a local coordinate 
system with the origin in the point with coordinates [(i + 1/2)h, nk] as shown in Fig. 
2.5, the discontinuity will propagate through the points of coordinates (0,O) and 
(ak/2, k/2). Accordingly the region of the xt plane to the right of the characteristic 
line will have the value corresponding to the solution at u;+ r, while everything to the 
left of it will have the value uy; thus, theoretically ul++$’ = u;, , . In particular, after a 
time T = 2nk/2 the discontinuity will move to the left, from the local origin, the 
distance X = - aT. 

In the RCM, according to expression (2.13) if the randomly chosen point P, lies to 
the right of the characteristic uy::/22 = v;+ , , which means that the solution will move 
h/2 to the left; however, if Pi lies to the left of the characteristic, u;::/t’ = z$’ and the 
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--x ih (i+l/Z)h (i+l)h +x 

FIG. 2.5. Example of a Riemann problem and the RCM. 

solution will move h/2 to the right. Since Pi is uniformly distributed, P, lies to the 
right of the characteristic with probability (h + &)/(2/z) and lies to the left with 
probability (h - &)/(2/z). Thus, after 2n steps, the approximate value of ~1 at x = ih 
and T = 2nk/2 comes from the initial discontinuity at the location X,, where 

2n 

x, = 2 Ej 
j= I 

(2.14) 

and cj are independent, identically distributed random variables with probability 
distribution 

Prob[e = - h/2] = Prob[P, 1 ies right charact.] = (h + ak)/(2h), 

Prob[e = h/2] = Prob[P, lies left charact.] = (h - ak)/(2h). 

(2.15) 

(2.16) 

The expectation and variance of E are 

E[E]= (!$!k)(-9) + (q$) +-q> (2.17) 

Var[e] = b(h* - u2k2). (2.18) 

Hence 

E[X,]= f E(cj)=-mk=uT, 
j=l 

(2.19) 

Var[X,] = 5 Var[ej] 
j=l 

k 
where q=-. 

h 
(2.20) 

If q is kept constant Var[X,] tends to zero, for fixed T, as h tends to zero. We thus 
see that the approximate solution tends to the theoretical solution as h is diminished, 
proving the convergence of the RCM. 

We note that in the event that q = k/h = l/u, we have Var[X,,] = 0; therefore, in 
this case the computed and theoretical solutions coincide for any values of k and h 
which satisfy the CFL condition. 

In the simple example provided by Eq. (2.4) the solution of the Riemann problem 
is trivial. For more complex problems the success of the RCM depends on the 
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possibility of solving the Riemann problem exactly and inexpensively and on the 
sampling technique. Chorin [2, 31 has developed the appropriate sampling strategies 
which are decisive for the success of the RCM (see further details in the Appendix). 

3. A PAIR OF CONSERVATION LAWS AND THE RANDOM CHOICE METHOD 

In this section we introduce the quasi-linear hyperbolic system of conservation 
laws of long waves in shallow water and its gas dynamic analogy and solution by the 
RCM. 

The shallow water equations can be written (see Stoker [ 121) as 

u,+uu,+gq,=o, (3.1) 

?t + [el + h)l, = 09 (3.2) 

where u is the water velocity, h is the depth of the undisturbed water, v is the free 
surface elevation, g is the gravity, and x and t are the space and time coordinates, as 
shown in Fig. 3.1. 

In order to make use of the gas dynamic analogy we introduce the quantities 

P= Pb + h)Y (3.3) 

where p is the “gas” density and p is the water density, and 

FE 1’ P dY = J” irP(? - Y) a = giv(2P)* 
-h -h 

(3.4) 

From Eq. (3.4) the relation between pressure and density for this particular “y law 
gas” is obtained: 

P= A/T, where A = g/2p and y = 2. (3.5) 

Taking into account Eqs. (3.4) and (3.5) and the fact that r7 = ~(x, t) and h = h(x), 
system (3.1)-(3.2) becomes 

u, t uu, + (l/p)& - gh, = 0, (3.6) 

p; t @ir), = 0. (3.7) 

FIG. 3.1. Coordinate system for the shallow water equations. 
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The shallow water equations (3.6) and (3.7) with h, = 0 are identical with the 
equations of isoentropic flow of a perfect gas with constant specific heat. In this 
analogy the depth of the water plays the role of the density of the gas. 

The sound speed c = (dpldp)“’ of gas dynamics will be 

E= (gP/p)“’ = (g(q + h))“Z. (3:8) 

This quantity F represents the speed of propagation of small disturbances, relative to 
the fluid velocity (see details in Stoker [ 121). 

Next we introduce the concept of Riemann Invariants, which, as we shall see, are 
constant quantities along characteristic lines. To this end we rewrite system 
(3.6~(3.7) with the help of Eq. (3.8) (see Stoker [ 121 for details). 

u, + uu, + 2EX - H, = 0, (3.9) 

2F, + 2uE, + a4ux = 0, (3.10) 

where H = gh. Supposing H, = m = const and adding and substracting Eqs. (3.9) and 
(3.10), respectively, we obtain a system which can be written 

I i+(u+C)$ (u+2F-mt)=O, 
I 

I 
$+(u-F)$ (u-2F-mt)=O. 

I 

Equations (3.11) and (3.12) can be written 

DJ L=o 
Dt 

DJ L=O 
Dt 

dx 
provided dt = u + C; 

dx 
provided x = u - E. 

(3.11) 

Equations (3.13) and (3.14) indicate that the quantities J, and J- are constant along 
lines whose slopes are dx/dt = u f F, respectively. These lines are called characteristic 
lines and J, Riemann Initariants. In isoentropic gas dynamic flow the Riemann 
Invariants are given by J, = u f (2/(y - 1))~. Hereafter we shall suppose that 
H, = 0. In this way the analogy between gas dynamics and shallow water is com- 
plete. 

According to Eqs. (3.13) and (3.14) we have two families of characteristics: the 
C, and C-, along which J, and J- are constant, respectively. If characteristics of 
the same family intersect a discontinuity is formed and the theory ceases to be valid; 
therefore a broader class of solutions, called generalized solutions (weak solutions), 
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must be considered. To this end we again write Eqs. (3.6) and (3.7) as a pair of 
conservation laws (for simplicity we drop the bars over the variables p and P): 

pt + m, = 0, (3.15) 

m, + (m2/p + P), = 0, where m = pu and P = P(p) = Ap? (3.16) 

Following the notation of Section 2 we can write system (3.15~(3.16) as 

wt+m+YL=o, W= [P, WIT and WV= Lwo g(WIT. (3.17) 

Differentiation of Eq. (3.17) gives the equivalent system 

W,+A(WW,=O, where A(W)= 0 fm [ 1 g, gm - 

The eigenvalues of A(W) are 1, = u f c (the slope of the characteristic lines). 
Certainly a generalized (weak) solution of the system of conservation laws (3.18) 

must satisfy the Rankine-Hugoniot conditions across every curve of discontinuity, 
i.e., 

s[W] = [F], (3.19) 

where s is the speed of propagation of the discontinuity. For the single conservation 
law presented in Section 2 the entropy condition requires that the characteristics on 
either side of a discontinuity run into the line of discontinuity, which is the case if the 
characteristic speed on the left is greater, on the right less, than s: 

qu,> > s > 4u,), (3.20) 

where A= a@,) is the eigenvalue of Eq. (2.10). The entropy condition for systems 
requires that for some index k, 1 < k < n (where n are the eigenvalues of matrix 
A(W) of Eq. (3.18)), 

while 

u4) > s > WJ (3.21) 

A,-,h) < s < 4, I(%). (3.22) 

These inequalities assert that k characteristics inpinge the line of discontinuity from 
the left and n - k + 1 from the right, a total of n + 1 (see Lax [7]). 

Next we study the Riemann problem for the shallow water equations (3.17). Let us 
consider the following initial data for system (3.17) (illustrated in Figs. 3.2a and b): 

W(x, 0) = 1 
s, = (%rP,) for x < 0, 
sr = (GP,) for x > 0. (3.23) 
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The solution at later times might look like Figs. 3.2a and b. S, and S, indicate left 
and right initial states, respectively. There are also two other possible solutions 
depending on the initial conditions: two shocks in opposite directions and two 
rarefaction waves in opposite directions. These solutions are taken into account by 
the RCM. In Fig. 3.2a, for instance, we have a right shock wave and a left centered 
rarefaction wave; the region between them is a steady state region termed S,; in the 
case of a gas the line with slope UT’ indicates the position of the slip line, but in 
fluids, as there is no slip line, it just indicates the slope of the velocity u*. 

We might think of connecting the S, state and the S, state (see Fig. 3.2a) by a 
“rarefaction” or depression shock satisfying the jump conditions. This situation is 
forbidden by the entropy condition for systems of conservation laws. This condition 
merits a short discussion for the shallow water equations. As was noted earlier, in 
Section 1, the shallow water theory prescribes a loss of energy at the jump; i.e., the 
particles which cross the jump cannot gain energy (see Stoker [ 121). This energy 
condition requires that the particles always move across the shock from a region of 
lower total depth to a region of higher total depth. In other words, only 
“compressive” hydraulic jumps are physically correct. Thus the energy condition, 
which rules out the rarefaction jump, is the analogy of the entropy condition in gas 
dynamics (in fact a loss of energy through an irreversible process implies an increase 
in entropy). In Fig. 3.2a the characteristics of J, family originating at both sides of 
the initial discontinuity, on the X axis, intersect producing the right shock. This shock 
separates two constant state regions S, and S,. The J- characteristics constitute a 
family of straight parallel lines in S* and S,, whose slopes change in crossing the 
shock. 

Next we consider the solution of the Riemann problem given by Eqs. (3.17) and 
(3.23). We use a modified version of the Chorin-Godunov iterative method (the 
Godunov method can be found in Richtmyer and Morton [9]) utilized by Chorin in 

FIG. 3.2. (a) The Riemann problem for P, > pr: right shock and pI > P* > pr. (b) The amann 

problem for p, < p,: left shock and p, < p* < pr. 
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the solution of gas dynamics problems (see Chorin [2]). By this method we first 
evaluate P, in the state S* (for convenience we use the variable P instead of p). We 
define the quantity 

* = PI-p* 
I q-u* * 

(3.24) 

If the left wave is a shock it can be shown (see the Appendix), that 

M, = /a, - $1 = P*@* - s,)* (3.25) 

In the same way we define 

(3.26) 

If the right wave is a shock then 

w = - PA4 - s,) = P*(U* - s,)* (3.27) 

In either of the two cases, expression (3.24) or expression (3.25) for M,, and (3.26) 
or (3.27) for M,, we obtain 

M, = @&)“*qx), (3.28) 

M, = @,P,)“*qm, (3.29) 

where 

(X- 1)“2 
F(x) = (1 _ (1/x)‘/‘)‘/’ 

for X > 1 

1-X 
= 2.83( 1 - x”~) 

for X < 1 

and 

X=P,/P,. 

From Eqs. (3.24) and (3.26) we obtain 

p 
* 

= UI - 4 + p&f, + pw, 
l/M, + l/M, ’ 

(3.30) 

Expressions (3.28), (3.29), and (3.30) constitute a closed system of equations for 
which a real solution exists. The iteration process starts with an initial guess for P% 
(or Mf and @). Following the idea of Chorin we use as an initial guess P$ = 
(P* + P,)/2 (more details on the iteration process can be found in Chorin [2] and 
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FIG. 3.3. Sampling of the Riemann problem in case A. 

Sod ] lo]). With the values of P,, M,, and M,, u* may be obtained by means of 
Eqs.. (3.24) and (3.26): 

u _ p, - p, + M,u, + M$, 

*- 

M,+M, * 

(3.3 1) 

Next we discuss the implementation of the RCM for the shallow water equations. The 
fluid is initially in the state given by Eq. (3.23). The Riemann solution obtained with 
the iteration just described is sampled at f = k/2 and X= B/z/2. We may distinguish 
two cases. 

(A) If P, > P,, the right wave is a shock and P (Bh, k/2) may lie within four 
possible segments (illustrated in Figs. 3.2a and 3.3). 

(B) If P, < P,, the right wave is a rarefaction wave and P (B/z, k/2) may lie within 
four possible segments. 

Case A. The velocity of the right shock S, is given by Eq. (3.27). If the sample 
point P lies to the right of the shock line S; ‘, we have P = P, @ = p,) and u = u,. If 
F lies to the left of the shock, P = P, (p = p*) and u = U* . If P lies to the left of the 
left rarefaction wave, P = P, @ = p,) and u = uI. If P lies inside the left rarefaction 
wave, then u - c = 2&/k; the constancy of the J, Riemann invariant and the y law 
p = A@‘, together with c = @P/p)“‘, gives u and P @ = p(P)). 

Case B is quite similar to Case A and is not described. 
The treatment of boundary conditions is fully documented in the work of Chorin 

[2] and therefore is not presented here. 

4. NUMERICAL RESULTS 

In this section we present some numerical results of the Random Choice Method 
applied to the problem of the breaking of a dam and a comparison with the results 
obtained by Stoker [ 121 and RC [8]. 

The problem of the breaking of a dam is illustrated in Fig. 4.1. At time t = 0 the 
dam is suddenly destroyed and the problem is to determine the subsequent motion of 
the water for all X and t. The initial conditions (see Stoker [ 121 or Re [8]) are the 
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” --x x 

FIG. 4.1. The breaking of a dam. 

upstream and downstream heights of the water and the velocity downstream (the 
velocity upstream is determined by the continuity condition). In our example these 
are 

W(x, 0) = 
1 

S, = (h, = 10.8 m, U, = 0.2667 m/set), 
S, = (h, = 1.8 m, U, = 1.6 m/set). (4.1) 

The situation at later times is illustrated in Fig. 3.2a: a shock is moving to the right 
and a depression wave is moving to the left, separated by a constant state. 

I t fan 

\ 

\ 

\\ I 

\ 

x-o.45 t 
shock 

/ / 

FIG. 4.2a. The Riemann problem solution (data from Stoker [ 121). 

h(m) 

FIG. 4.2b. Height of water for different times (data from Stoker [ 12)). 
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In Figs. 4.2a and b, 4.3, and 4.4, we present the numerical solutions obtained by 
Stoker [ 121 and RC [S] and with the RCM, respectively. 

Stoker’s solution is the theoretical solution and therefore we take it as our standard 
of reference. The solution obtained by RC (Fig. 4.3) shows a distortion in the 
amplitude and speed of propagation of the shock and the absence of a constant state 
behind the shock. This behaviour is due solely to the dissipative character of the 
method utilized (for small values of time the resistance and slope terms are negligible; 
see Stoker [ 121). 

The solution by the Random Choice Method in Fig. 4.4 shows that the shock wave 
and the depression wave have been computed with almost infinite resolution. Because 

h(m) 

t 

-2 -1 0 1 2 x(km) 

FIG. 4.3. Height of water for different times (data from R6 181). 

h = l/50 

k = 0.001 

10 CPU time: 3 sec. (CDC 6400) 
* 

l 

t 

1 *- 
t = 200 

4 : : : : : : : : : - 
-2.4 0 1.2 2.4 xb) 

FIG. 4.4. Height of water after 16 time steps obtained with the Random Choice Method. 
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of the random character of the method the locations of the shock and the depression 
wave are not exact. However, on the average, their locations are exact. The constant 
state is represented exactly. Although the depression wave is not smooth it is very 
close to the theoretical solution. It is then possible to observe the accuracy of the 
RCM method by comparing Figs. 4.4 and 4.2b; in fact, both solutions should give 
very close results since Stoker’s is in essence the same as the Godunov iterative 
scheme, the only difference being its deterministic character. 

In Table I we present an example of the influence of the sampling technique on the 
quality of the solution when the following strategies are used: (a) only one value of 0 
is picked for each time level, and (b) only one value of B is picked for each time step 
but the Bi are picked according to the modified sequence outlined in the Appendix. 
The two experiments are compared when n is a multiple of mz and thus the solution 
in case b is likely to be at its highest accuracy. 

TABLE I 

h 

x Case a Case b 

0.2449 10.8000 10.8000 
0.2653 10.8000 10.8000 
0.2857 10.8000 10.8000 
0.306 1 10.8000 10.8000 
0.3265 10.8000 10.7236 
0.3469 10.5648 9.3177 
0.3673 9.0179 8.6082 
0.3877 8.434 1 8.1966 
0.408 1 8.2866 7.3805 
0.4285 8.2356 7.3781 
0.4489 7.273 1 6.5995 
0.4693 6.6384 6.1101 
0.4898 4.7132 5.7670 
0.5 102 4.7132 4.7132 
0.5306 4.7132 4.7132 
0.55 10 4.7132 4.7132 
0.5714 4.7132 4.7132 
0.5918 4.7132 4.7132 
0.6122 4.7132 4.7132 
0.6326 4.7132 4.7132 
0.6530 4.7132 4.7132 
0.6734 4.7132 4.7135 
0.6938 4.7132 1.8000 
0.7142 1.8000 1.8000 
0.7346 1.8000 1.8000 
0.7551 1.8000 1.8000 
0.7755 1.8000 1.8000 

Note. h = l/50, k = 0.0005, n = 33, m, = 3, m2 = 11 
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TABLE II 

17 

X h 

0.2449 10.8000 
0.2653 10.8000 
0.2857 4.9345 
0.306 1 4.9342 
0.3265 4.9392 
0.3469 4.9319 
0.3673 4.9309 
0.3877 4.9305 
0.408 1 4.9289 
0.4285 4.9286 
0.4489 4.9270 
0.4693 4.9267 
0.4898 4.9250 
0.5 102 4.9246 
0.5306 4.9242 
0.5510 4.9235 
0.5714 4.9221 
0.5918 4.9211 
0.6122 4.9198 
0.6326 4.9195 
0.6530 4.9174 
0.6734 4.9173 
0.6938 4.9169 
0.7142 4.9156 
0.7346 1.8000 
0.755 1 1.8000 
0.7755 1.8000 

Note. h=1/50, k=l, n=ll, m,=3, 
m,=ll. 

Although the RCM is unconditionally stable, if the CFL condition is violated, the 
consistency is lost. This is sown in Table II, where the CFL condition is grossly 
violated (k N 100 koi,): the depression zone is transformed into a fake constant state 
(compare with Table I, case b). 

In Table III we show the effect of the space step size on the quality of the solution 
(h = l/20). Comparison with corresponding values in Table I shows very good 
agreement, in spite of the coarseness of the grid utilized. A coarse mesh is most likely 
to affect the solution in the depression zone. 

5. CONCLUSIONS 

We have introduced a random choice method (RCM) for the numerical solution of 
the shallow water equations in the light of the analogy with gas dynamics. 
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TABLE III 

x h 

0.2105 10.8000 
0.2631 10.8000 
0.3157 10.8000 
0.3684 9.7411 
0.4210 8.2409 
0.4736 7.2316 
0.5263 4.7132 
0.5789 4.7132 
0.6315 4.7132 
0.6842 4.7132 
0.7368 1.8000 
0.7894 1.8000 
0.8421 1.8000 

Note. h = l/20, k = 0.0005, n = 33, m, = 3, 
m2= 11. 

The method is particularly appropriate for the treatment of discontinuities. It is 
unconditionally stable and has almost infinite resolution. It can easily be extended to 
two dimensional rectangular coordinates using splitting techniques. 

It is planned to use the present method for the solution of high Reynolds viscous 
flows in conjunction with appropriate boundary layer approximations. 

APPENDIX 

Shock Relations 

In this section we present an analysis of the shock relations for the case of a right 
shock illustrated in Fig. A.l. 

In the figure u* and U, are the absolute velocities, S is the speed of the shock 
relative to the downstream velocity ur, and S + U, is the absolute velocity of the 
shock. Figure A.2 illustrates the relative velocities with reference to a frame moving 
with the absolute velocity of the shock. 

Conservation of mass (S + u,)[p] = [pu] becomes 

p*(u* - s - u,) = - p,s. (A.11 

FIG. A.1. Right shock wave, absolute velocities. 
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FIG. A.2. Right shock wave, relative velocities. 

Conservation of momentum (S + u,)[pu] = [pu2 + p] becomes 

-&S(U* - u,) = P, - P, . 

From Eqs. (A.l) and (A.2) we obtain 

u* _ u, = ((P* - PA@* -Pr)Y2 
@*PY2 * 

(44.2) 

(A.31 

The conservation of momentum can also be written as 

(A.4) 

Replacing Eq. (A.3) in (A.4) and after some algebraic manipulations we obtain 

M = _ KPrY2(x - 1 Y2 
I (1 - (l/X)1’2)1’2 ’ (A.5 > 

where X = P*/P,. 

Rarefaction Wave 

Here we present an analysis of the rarefaction wave relations for the case of a right 
rarefaction wave as illustrated in Fig. A.3. 

1 
-1 

U* 

0 

FIG. A.3. Right rarefaction wave. 
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Let us define the quantity 

IV,= p*-p* 
u,-u* - G4.6) 

With the help of the J- characteristic we obtain 

24, - u* = 2(c, - c*). 64.7) 

Replacing Eq. (A.7) in (A.6), using Eqs. (3.5) and (3.8), and after some algebra we 
obtain 

M = ePr)“2u - xl 
r 2.83(1 - xv4) ’ 

where X = P+JP,. 

The Sampling Technique 

The sampling strategies crucial for the success of the RCM method were developed 
by Chorin [2, 31. 

The magnitude of the random variable E (see Section 2) depends on the choices of 
8. The strategy of picking a new value of 9, for each space step and each time step, is 
disastrous in practice because of the possible generation of spurious constant states. 
Chorin introduced the idea of picking only one B per time step, thus greatly 
improving the method. In the example shown in Section 2, the standard deviation of 
E, which measures its magnitude, is n”*h/2( (1 - aq) (1 + aq)} y2 = O(n”*h). 

For further reducing the variance of the solution Chorin proposed the following 
strategy: the interval [-4, f] is divided into m2 subintervals m2 < n, and 8, is picked 
at random in the first subinterval, 8, in the second subinterval, a,,,,+, in the first subin- 
terval, etc. This subinterval ordering is obtained through the formula ni+ i = 
(m + n,) mod m2, where m,, m2, m, < m2 are prime integers and n, given, n, < m2. It 
is clear that since only one 8, is picked per time step, after n = m, steps m2 values of 
8 have been picked and each one in a different subinterval. In this way the 8, reach 
approximate equidistribution over [-t, f ] at a faster rate. If this strategy is used in 
the example of Section 2 and n is multiple of m,, the standard deviation of E is of 
order O(h(n/m,)l’*), thus showing the advantage of this last technique over the 
preceding one. 
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